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Monte Carlo variational transition-state theory (MCVTST) has been used to calculate unimolecular dissociation
rates for RDX (hexahydro-1,3,6-trinitro-1,3,5-triazine) for total energies over the range 170-450 kcal/mol.
The calculations were done using the potential energy surface (PES) developed by Chambers and Thompson
(J. Phys. Chem. 1996, 99, 15881). This PES allows for dissociation to occur by bond fission (energy
required: 48 kcal/mol) and by concerted triple bond fission (energy barrier: 37 kcal/mol); these are the
dominant primary dissociation channels consistent with the results of the molecular beam infrared multiphoton
dissociation (MB-IRMPD) experiments of Zhao, Hintsa, and Lee (J. Chem. Phys. 1988, 88, 801). The
computed branching ratio for ring to simple bond fission at 170 kcal/mol is in good agreement with the value
(∼2) determined from the MB-IRMPD data. The rates for the two reaction channels and the ratio of the
rates are compared to classical trajectory results; the agreement is good, as expected, at the lower energies,
but diverges after the total energy exceeds about 250 kcal/mol. However, the ratio of the rates is comparable
for the entire energy range. We find that the TST dividing surface for the concerted molecular elimination
(i.e., ring fission) is correlated with the ring opening, the initial stage of the reaction, thus simplifying the
definition of the surface dividing reactants and products defined by the minimum flux. We also show how
importance sampling can be used to facilitate the computations.

I. Introduction

The initial decomposition reactions of RDX (hexahydro-1,3,6-
trinitro-1,3,5-triazine) (see Figure 1) apparently depend on the
experimental conditions, particularly the physical state.1 How-
ever, the elimination of NO2 by simple rupture of one of the
three NsN bonds,

is observed for all conditions. Molecular beam infrared
multiphoton dissociation (MB-IRMPD) experiments2 show that
decomposition of gas-phase RDX also occurs by ring (triple
CsN bond) fission,

and that this reaction is competitive with (R1); the experimen-
tally determined ratio of concerted molecular elimination (R2)
to simple NsN bond fission (R1) is about 2. However, reaction
R2 has not been observed in condensed-phase systems.
We have reported a series of classical trajectory studies that

were done in an effort to develop a potential energy surface
(PES) and to understand the fundamental dynamics,3 confor-
mational changes,4,5and unimolecular reactions6,7of RDX. Both
the formulation of an accurate potential energy surface (PES)
and the dynamics calculations are challenging problems because
of the size and complexity of the system. The molecule is too
large for extensiveab initio quantum chemistry calculations to
determine a global PES that describes the decomposition
reactions. Thus, we have made use of the limited spectroscopic,
thermodynamic, and kinetic data to construct an “empirical”
PES. While the energy required for the NsN bond rupture
reaction (R1) is reasonably well-established (to within a few

kilocalories per mole), there is some uncertainty about the
energy barrier for the ring fission reaction (R2). Someab initio
results indicate that it is on the order of 70 kcal/mol;8 however,
our calculations6,7 suggest that the barrier must be less than 40
kcal/mol in order to obtain results in accord with the MB-
IRMPD experiments.2

We have assumed that the MB-IRMPD results provide a
critical test of the PES, and thus we have focused on
comparisons of the computed results to the measured branching
ratio and product energy distributions reported by Zhaoet al.2

The estimated total energy at which dissociation occurs in these
experiments is in the range 150-170 kcal/mol. It is not feasible
to perform trajectory calculations at these energies because of
the long integration times that are required for reactions to occur.
Thus, the dynamics calculations have been for relatively high
energies (g200 kcal/mol), and the comparisons are based on
extrapolations down to the experimental energies. As we have
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RDX f C3H6N5O4
• + NO2

• (R1)

RDX f 3CH2NNO2 (R2)

Figure 1. RDX (hexahydro-1,3,6-trinitro-1,3,5-triazine) and the MB-
IRMPD products.
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recently illustrated, there are dynamics effects at such high
energies that make it difficult to do simple extrapolations.9

Unimolecular rates are limited by the rate of intramolecular
vibrational energy transfer (IVR) at high energies. However,
the dynamics at energies near threshold often behave statisti-
cally. In the statistical regime, the unimolecular rate constants
can usually be represented by simple theories such as RRK.
The RRK equation is

whereν is a frequency factor,E* is the energy required for
reaction, ands is the number of effective degrees of freedom.
Since trajectory calculations are usually performed for energies
well in excess of the statistical regime, fits of eq 1 to the
computed rates often result in values ofswhich are significantly
lower than 3N- 6 (see Table I of ref 9). In ref 9, we examined
the statistical and nonstatistical behavior of simple bond rupture
in a relatively large molecule (dimethylnitramine) over a range
of energies extending from the reaction threshold region up to
a few hundred kilocalories per mole above it. In that study,
we used classical trajectories and Monte Carlo variational
transition-state theory (MCVTST) calculations10,11 to calculate
rates and analyzed them in terms of RRK theory and IVR rates.
The advantage of MCVTST is that the statistical rates can

be calculated for general potential energy surfaces, e.g., one
used in a classical trajectory simulation. It is not necessary to
make simplifying assumptions such as separability or harmo-
nicity for the molecular modes. The MCVTST rates can be
accurately fit by eq 1 withs) 3N- 6; however, it is necessary
to do the MCVTST calculations in order to determine the
frequency factorν. Thus, it is necessary to use a combination
of MCVTST and classical trajectory calculations in order to
describe the reaction over a wide energy range.
In the present study, we have used MCVTST to calculate

the rates of unimolecular decomposition of RDX. The calcula-
tions span the range of energies from the experiment2 (170 kcal/
mol) to the energies of the classical trajectory studies6,7 (200-
450 kcal/mol). The result at 170 kcal/mol is in good agreement
with the experimental result of Zhaoet al.2 Comparisons of
the MCVTST rates for the higher energies to the trajectory
results illustrate the extent of the dynamical effects.
It is necessary to make some approximations for a system of

this size. The main approximations here are that the dynamics
are classical and those involved in the construction of the
potential energy surface. Thus, the results could be affected if
quantization effects are not negligible. However, it is not easy
to ascertain this without making other assumptions which could
be questionable. For example, RRKM calculations could be
used to introduce quantization, but it is necessary to assume
separable, harmonic vibrational modes for the system. We
believe that neglecting quantization is often a much less severe
approximation than those. The other important approximations
in the model used here are those used in formulating the
potential. Those, however, are the ones we wish to evaluate
by making the comparison with the MB-IRMPD experiment.2

This study also illustrates how the MCVTST approach can
be used to study complex reactions for conditions near reaction
thresholds where the statistical approximation is usually valid
and where it is usually not possible to use classical trajectory
simulations. We also show how to use importance sampling
in MCVTST to facilitate calculations of microcanonical rate
coefficients for large molecules.

II. Theory and Computational Methods

Transition-State Theory. In transition-state theory the
microcanonical rate constant is determined by the flux through

a dividing surfaceS*

whereS* is theoretically a hypersurface, which depends on all
of the phase-space variables, that separates reactants and
products andν⊥ is the velocity atS* perpendicular toS* in the
direction of products. The integral in the numerator is over
the transition-state region, and the one in the denominator is
over all of the phase space of the reactant.
For simple bond fission eq 2 can be written as

Further simplification can be achieved since the integration over
momentum space can be done analytically, which gives

where12

Vc indicates that the integrals are over only the configuration
space;µr ) µiµj/(µi + µj), the reduced mass of the two atoms
making up the breaking bond. This method is obviously more
efficient numerically, because one has to integrate over 3N-
dimensional configuration spaceVc {dq} instead of 6N-
dimensional phase spaceV {dΓ ) dp dp}. Integration over
Cartesian momentum space11hwas performed to obtain eqs 4-6
by exploiting the fact that the kinetic energy is diagonal in
Cartesian coordinates.
We carefully checked the agreement of results for eqs 3 and

4. We had done so earlier also.9 We used the agreement
between the two to test the computer code.
Monte Carlo Sampling. A convenient way to estimate the

integrals in eqs 3 and 4 is to use Metropolis Monte Carlo
sampling,13 which is an efficient method for evaluating multi-
dimensional integrals of the type

In the Metropolis method the functionf(Γ) determines the
probability of accepting an attempted random moveΓi f Γi+1.
Each time there is an attempt to move the system to a new
configuration a new value off(Γ) is calculated. Iff(Γnew) >
f(Γold), the move is accepted andΓi+1 ) Γnew. If f(Γnew) <
f(Γold), the move is accepted with probabilityf(Γnew)/f(Γold);
otherwise the move is rejected, andΓi+1 ) Γold ) Γi. Integrals
of the kind in eq 7 (i.e., those in eqs 3 and 4) can be estimated
by

whereN is a large number.13

k(E) ) ν(1- E*
E )s-1 (1)

kTST(E) ) kstatistical(E) )
∫S*δ(H(p,q) - E)ν⊥ dS*

∫Vδ(H(p,q) - E) dΓ
(2)

kTST(E) ) 1
2

∫Vδ(H(p,q) - E) δ(r - r*) |r̆| dΓ

∫Vδ(H(p,q) - E) dΓ
(3)

kTST(E) ) 1
2

∫VcW(q)〈|r̆RC|〉 δ(rRC - r*) dq

∫VcW(q) dq
(4)

W(q) ) [E- V(q)](3N-5)/2 (5)

〈|r̆RC|〉 ) (4(E- V(q))/(3π(N- 1)µr))
1/2 (6)

〈g〉 )
∫V f(Γ) g(Γ) dΓ

∫V f(Γ) dΓ
(7)

〈g〉 )

∑
i)1,N

g(Γi)

N
(8)
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In practice it is necessary to replace theδ functions in eqs 3
and 4 by a narrow function; here we used a step function:δ(x)
= h) 1/2ε, if |x| < ε; δ(x) = h) 0, otherwise. The maximum
step sizes in the Markov walks were such that the acceptance/
rejection ratio fell in the range 0.3-0.8.
We used importance sampling10 to speed up the convergence

of the sum eq 8. This is effective wheng in eq 7 is a narrow
function and only a small part∆g of the integration space
contributes to the integral (which is the case here), as illustrated
in Figure 2. The random walk visits the region∆g very
infrequently, which results in very slow convergence of the sum
in eq 6. To speed up the convergence, one can choose a part
∆V of the integration spaceV such that∆g , ∆V , V and∆g
∈ ∆V. Then, eq 7 can be rewritten as

whereG is an auxiliary biasing function

If g(Γ) ) 0 for Γ ∉ ∆V, then eq 9 is exact. Convergence

of the two integrals in eq 9 requires many fewer steps in the
Metropolis walk than in the direct calculation of the integrals
in eq 5. If f(Γ) is a smooth function (e.g., a constant), the
number of stepsN in a direct calculation of the integrals in eq
7 is inversely proportional to the ratio of the volume which
contributes to the integral and the total volume:

Similarly, if eq 9 is used, the number of steps for calculating
the two integralsI1 and I2 is

and the ratio is

It is a minimum when∆V ) [∆gV]1/2.
We used importance sampling for calculations at energies

less than 200 kcal/mol, where standard sampling converges
extremely slowly. The volume∆V and auxiliary function were
determined by the condition

for the bond rupture reaction (R1) and

for the ring opening reaction (R2).
The volume∆g is determined by the widthε of theδ-function

The values ofε were taken to be 0.05 Å for NsN bond fission
(R1) and 0.02 Å for ring opening (R2). The location of the
dividing surface (i.e.,r0) was determined variationally corre-
sponding to the minimum value of the rate constant. We made
sure that (using a Taylor’s series expansion)

near the minimumr0 ) r0min, that is, thatε is sufficiently small
that the calculated rate is unaffected by it.
The rates of convergence of the calculations with importance

sampling were at least an order of magnitude faster than those
done without it. In fact, importance sampling makes the
calculations feasible. For example, the rates at energies lower
than 200 kcal/mol did not converge for 2× 108 steps when the
Markov walk was over the entire configuration space (i.e., direct
evaluation of eq 4); however, when importance sampling was
used, the integrals

Figure 2. Upper frame: Illustration of a narrow function in the volume
V and the auxiliary volume∆V. Lower frame: Illustration of a random
walk in V for the calculation of integralI1 and a random walk in∆V
to calculate the integralsI2 (see eq 9).

〈g〉 )
∫V f(Γ) g(Γ) dΓ

∫V f(Γ) dΓ

)
∫∆V f(Γ) dΓ

∫V f(Γ) dΓ

∫∆V f(Γ) g(Γ) dΓ

∫∆V f(Γ) dΓ

)
∫VG(Γ) f(Γ) dΓ

∫V f(Γ) dΓ

∫∆V f(Γ) g(Γ) dΓ

∫∆V f(Γ) dΓ
) I1 I2 (9)

G(Γ) ) {1 Γ ∈ ∆V
0 Γ ∉ ∆V (10)

N′ ∝ V/∆g (11)

N∝ V
∆V

+ ∆V
∆g

(12)

N
N′ ) ∆g

∆V
+ ∆V

V
, 1 (13)

G) {1 if 2.0 Å< rCsN < 2.6 Å
0 otherwise

(14)

G) {1 if 1.9 Å< rNsN < 2.1 Å
0 otherwise

(15)

δ(r - r0) = {1/2ε if |r - r0| < ε

0 if |r - r0| > ε
(16)

(d2k(r0)/dr0
2)

ε
2

k(r0)
2

, 1 (17)

I1 )
∫∆VcW(q) dq
∫VcW(q) dq

)
∫VcGW(q) dq
∫VcW(q) dq

(18)

I2 )
∫∆VcW(q)〈|r̆RC|〉δ(rRC - r*) dq

∫∆VcW(q) dq
(19)
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converged to within 10% accuracy after 2× 107 and 5× 106

steps, respectively.
Dividing Surfaces. Strictly speaking, the dividing surface

S* is a function of all of the coordinates and momenta, but in
practiceS* can usually be defined by only a few coordinates.
For simple bond-rupture reactions, the dividing surface can be
defined as a function of the internuclear separationr* of the
pair of atoms for the bond (NsN in the present case).
Rigorously, the value ofr* should be chosen so that the flux
through the dividing surface is minimized.
Since there are three NO2 groups in RDX, the total rate

constant for simple bond rupture (SBR) is

For a concerted reaction the choice ofS* is more complex.
It is usually necessary to define it in terms of several coordinates.
For the present case, because of the nature of the potential,6,7

which is based on the idea of concerted ring decomposition into
three units of CH2NNO2, it is possible to use a somewhat
simplified dividing surface. The potential is formulated such
that when one of the ring CsN bonds breaks, the two alternate
CsN weaken and the three other CsN bonds become stronger
(i.e., double bonds form). This is accomplished with switching
functions.6,7

Since the RDX PES is rather complicated, it is instructive to
consider a simpler example. The RDX molecule is a trimer of
CH2NNO2; however, we can illustrate the concerted ring fission
by considering a dimer. Each unit of the dimer is denoted by
CsN (for the illustration we can consider only the ring atoms);
that is, we consider the model reaction

A plot of the surfaceV(r1,r3) for this reaction is shown in Figure
3; the simple model PES was obtained by using some modifica-
tions of the PES parameters given in ref 7. All of the bending
interactions are neglected, and it is assumed thatr2 ) r4 ) a
constant. Four regions I, II, III, and IV are labeled in Figure 3.
Region I corresponds to the reactant (CN)2, region IV corre-
sponds to separated products CN+ CN, and regions II and III
are the regions where the ring is open but only one of the bonds
has been broken. To go from region I to region IV, a trajectory

must cross two ridges (marked by dashed lines), corresponding
to the rupture of bondsr1 andr3. Crossing the ridge between
I and II or between I and III corresponds to the ring opening
by rupture of one of the ring bonds. Subsequent crossing of
the ridge between regions II and IV or that between regions III
and IV leads to the product valley. The heights of the second
ridges (those between II and IV and between III and IV) are
much lower than the ridges for the initial ring opening bond
rupture. Thus, the initial bond rupture is the bottleneck in the
concerted molecular elimination. After a trajectory has crossed
the first ridge, the crossing of the second one follows very
quickly.
Thus, the dividing surface in the MCVTST calculation can

be defined by using the variables associated with the first ridge.
To verify this we performed some trajectory calculations for
RDX using the Chambers-Thompson7 PES. The initial condi-
tions for the trajectories were selected by using the same Monte
Carlo procedure as described above for the MCVTST calcula-
tions. We used the trajectories to determine the correlation
between the rates of initial ring opening and concerted reaction.
Table 1 shows the number of trajectories for which the ring
opens and then the concerted reaction occurs. As in ref 7, the
initial conditions for an ensemble of 200 trajectories were picked
randomly and then we determined the number of trajectories
for which one of the ring bonds broke (ring opening) and for
which three alternate CsN bonds broke (complete depolym-
erization). Though there are some differences (shown in bold
font), there is good correlation between the two. This confirms
that the rupture of one of the bonds is very quickly followed
by the rupture of two others.
Thus, the MCVTST rate constant calculation for the concerted

reaction is simplified. To determine the rate of the concerted
reaction, we can simply calculate the rate of the initial bond
rupture that opens the ring. The rate of concerted molecular
reaction (CME) can be expressed as

where we identify the alternate sets of CN bonds as 1, 3, 5 and
2, 4, 5.
The dividing surface for each reaction was determined by

calculating the flux for a series of 10 surfaces. The flux was

Figure 3. Ring fission molecular elimination reaction of RDX occurs
when one of the CsN bonds breaks. This is accompanied by formation
of double bonds in the adjacent CsN bonds and weakening (and
subsequent breaking) of the alternate CsN bonds around the ring. This
process is illustrated here with a model PES for a simple four-membered
ring (see eq 21). The illustration is for a dimer, while RDX is a trimer.
The model was designed for clarity, not accuracy (e.g., the reaction
enthalphy is qualitatively different in the model and in RDX).

kSBR) 3kNsN (20)

C N
r1

N Cr3

r2r4

C

N

N

C
+ (21)

TABLE 1: Ring Bond Fissions as a Function of Timea

t/∆t N1 N3 N5 N135 N2 N4 N6 N246

1 2 2 2 2 4 3 3 3
2 3 3 3 3 5 5 5 5
3 5 5 5 5 5 5 5 5
4 5 5 5 5
5 5 5 5 5 5 5 5 5
6 5 5 5 5 5 5 5 5
7 7 7 9 7 5 5 5 5
8 10 10 10 10 5 6 6 5
9 11 11 11 11 7 7 7 7
10 11 11 11 11 7 7 7 7
11 11 11 11 11 7 7 7 7
12 11 11 11 11 8 8 8 8
13 12 12 12 12 10 10 10 10
14 12 12 12 12 10 10 10 10
15 12 13 12 12 10 10 10 10
16 13 13 13 13 10 11 10 10
17 14 15 15 14 11 11 11 11
18 15 16 16 15 11 11 11 11
19 17 17 17 17 11 11 11 11

a The number of trajectoriesNi in which one of the six CsN ring
bonds had ruptured and the number of trajectoriesNCME in which three
of the CsN broke are given at intervals of timen ) t/∆t(∆t ) 2.6×
10-14 s). In some cases there was an initial CsN bond fission but no
subsequent bond fissions to give complete decomposition; these are
indicated by bold type. The subscripts, 1, 2, ..., 6 indicate a numbering
of the rings bonds. The total energy is 400 kcal/mol.

kCME ) k1,3,5+ k2,4,6) 2kCN (22)
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calculated for dividing surfaces located at 10 values ofrNN over
the interval 2.1-3 Å for the simple bond rupture reaction and
10 values ofrCN over the interval 1.9-2.1 Å for the ring fission
reaction. The minimum ofkNN was found to be atrNN ) 2.55
Å, and the minimum ofkCN was found atrCN ) 2.0-2.1 Å
(depending on the energy). There is less variation inkNN as a
function of the location of the dividing surface than in the case
of kCN.

The rates of convergence of the Monte Carlo averages are
shown in Figure 4 forE ) 300 kcal/mol. Parts a and b of
Figure 4 show plots of the integralsI1 and I2 (see eq 9) as
functions of the number of Markov steps for ring fission (circles)
and simple bond rupture (squares), respectively. Since these
reactions can occur, respectively, in six and three different ways,
we also checked the convergence of the results by comparing
the rates for these identical channels; the variations in these
results give estimates of the Monte Carlo error of about 10-
15%.

III. Results and Discussion

The MCVTST calculated rates are given (squares) in Figure
5; the results for simple NsN bond rupture are shown in the
upper frame of Figure 5 and those for the ring fission reaction
in the lower frame. The rates are plotted according to the RRK
energy dependence, that is, logk versus log (1- E*/E); the
straight lines in the plots are fits of the MCVTST rates to the
RRK equation

The classical trajectory results reported by Chambers and
Thompson7 are shown as circles.
There is good agreement between the MCVTST and classical

trajectory results for both NsN bond rupture and ring fission
for energies in the range 200-250 kcal/mol, although the
statistical rates are greater than the dynamical rates for the entire
energy range studied. The two calculations give the same
energy dependence at the lower energies; however, at higher
energies the trajectory rates are much less strongly dependent
on the energy than are the statistical rates. The classical
trajectory results are not well-described by RRK theory over
the entire range of energies, although at the lower energies (see
Figure 4) the dynamics results begin to behave statistically. This
is typical for unimolecular dissociation.11 We have recently
addressed this point in a study of a model polyatomic molecule.9

We have shown in ref 9 that this behavior is due to the
competition between chemical reaction and intramolecular
vibrational energy exchange.
The MCVTST results are well-described by the simple RRK

theory, eq 23. The solid lines in Figure 5 are plots of the RRK
equation fit to the calculated results. In each case, we assumed
thatE* is equal to the static potential barrier and then determined
the values ofν and s by linear least-squares fitting. The
calculated value ofs for both reaction channels is 57; that is, it
has the expected theoretical value of 3N - 6. This is not
surprising since even for total energies in the region just above
170 kcal/mol the average energy per mode is low relative to
the dissociation energy; thus, the harmonic approximation should
be valid. The MCVTST calculation also yields a value of the

Figure 4. Plots of integralsI1 andI2 (see eqs 9, 18, and 19) as functions
of the number of steps (where 4e6, for example, means 4× 106) in the
Markov walk. Circles correspond to NsN bond fission which
subsequently leads to concerted molecular elimination (CME), and
squares correspond to NsN bond rupture (SBR). The rate constants
of individual bond ruptures arekNN ) I1NNI2NN andkCN ) I1CNI2CN. The
rates of reactions R1 and R2 arekSBR) 3kNN andkCME ) 2kCN. These
results are forE ) 300 kcal/mol.

Figure 5. MCVTST rate constants for NsN bond fission (upper frame)
and concerted molecular elimination (lower frame), shown as squares.
The classical trajectory results from ref 7 are shown as circles, and
RRK theory fit to the MCVTST points is shown by the solid line.

k(E) ) ν(1- E*
E )s-1 (23)
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frequency factorν, which depends on the parameters of the
transition state, in a relatively simple and straightforward way.
In ref 9, we give a detailed discussion of the correspondence
between trajectory simulations, MCVTST, and RRK theory.
Figure 6 shows plots of the branching ratiokSBR(E)/kCME(E)

as a function of energy calculated by using MCVTST (squares)
and classical trajectories7 (circles); the experimental value2 of
2 for the branching ratio is shown as a horizontal bar since there
is some uncertainty in the total energy of the molecule when it
dissociates.
The estimated total excitation of the molecule upon dissocia-

tion in the MB-IRMPD2 experiments was estimated to be 80-
90 kcal/mol above the zero-point energy (80 kcal/mol), giving
a total energyEtotal ) Eexcitation + Ezpe≈ 160-170 kcal/mol.
This is the total energy we used in the classical trajectory and
MCVTST calculations. Our calculation is in relatively good
agreement with the experimental branching ratio of 2. Better
agreement with experiment might be obtained for a slightly
higher barrier to the ring fission reaction. Nevertheless, the
present PES surface appears to be approximately correct.
Some recent experiments14-16 on the decomposition of

condensed-phase RDX are relevant here. The ring fission
reaction is not observed in these experiments. This is likely
due to the differences in the experimental conditions in refs
14-16 and those in the MB-IRMPD experiments.2 The
estimated temperature of the RDX condensed-phase
experiment14-16 is ∼1000 K, which gives a total energyEtotal
) skT+ Ezpe ) 57kT + Ezpe≈ 190-200 kcal/mol. At this
energy the branching ratio is much less than 2; however, our
calculations show that the concerted ring fission reaction is still
significant. The estimation of experimental temperature is
rough, and if the temperature is higher than assumed, the NsN
bond fission might be dominant. However, we believe that the
explanation for the differences between the gas- and condensed-
phase results is due not only to the differences in temperatures
(energies) in the experiments but also due to condensed-phase
effects such as Wight and Botcher15 have suggested; they
pointed out that the “volume of activation” might dampen the
ring fission reaction in solids and liquidssthe surrounding
molecules simply inhibit this decomposition path.

IV. Summary and Conclusions

We have used Monte Carlo variational transition-state theory
(MCVTST) to compute unimolecular dissociation rate coef-

ficients for RDX (hexahydro-1,3,6-trinitro-1,3,5-triazine). The
calculations are for total energies over the range 170-450 kcal/
mol, thus spanning the range from the experimental energies
for the molecular beam IRMPD experiments of Zhaoet al.2

and our previous studies using classical trajectories.6,7 The
potential energy surface used in the present calculations is the
one reported previously.7 This PES allows RDX to dissociate
by bond fissions (the NsN bonds are the weakest, requiring
48 kcal/mol to break) and by concerted molecular elimination
involving the rupture of three CsN bonds in the ring (37 kcal/
mol is required to break the first ring bond).

The computed branching ratio (ring fission to simple bond
rupture) at 170 kcal/mol is in good agreement with the value
of 2 measured by Zhaoet al.2 Furthermore, the computed
statistical rates are in good agreement with the previously
reported classical trajectory results6,7 at the lower energies but
diverge for energies in excess of about 250 kcal/mol, although
the ratio of the rates are comparable over the entire energy range
studied. There are significant dynamical effects due to the
limiting IVR rates at the higher energies, thus causing the
differences in the trajectory and MCVTST rates. The simple
RRK equation can be accurately fit to the MCVTST rates,
although RRK theory cannot be used to predict the rates since
the frequency factor must be determined by other means (such
as MCVTST).

This study shows that the PES7 “predicts” the measured
reaction-branching ratio. Furthermore, we have illustrate how
the MCVTST approach can be used to efficiently compute
unimolecular rates for large, complex molecules.

Acknowledgment. This work was supported by the U.S.
Army Research Office.

References and Notes

(1) See, for example: Adams, G. F.; Shaw, R. W., Jr.Annu.ReV. Phys.
Chem. 1992, 43, 311.

(2) Zhao, X.; Hintsa, E. J.; Lee, Y. T.J. Chem. Phys. 1988, 88, 801.
(3) Sewell, T. D.; Chambers, C. C.; Thompson, D. L.; Levine, R. D.

Chem. Phys. Lett. 1993, 208, 125.
(4) Wallis, E. P.; Thompson, D. L.Chem. Phys. Lett. 1992, 189, 363.
(5) Wallis, E. P.; Thompson, D. L.J. Chem. Phys. 1993, 99, 2661.
(6) Sewell, T. D.; Thompson, D. L.J. Phys. Chem. 1991, 95, 6228.
(7) Chambers, C. C.; Thompson, D. L.J. Phys.Chem. 1995, 99, 15881.
(8) Habibollahzadeh, D.; Grodzicki, M.; Seminario, J. M.; Politzer, P.

J. Phys. Chem. 1991, 95, 7699.
(9) Shalashilin, D. V.; Thompson, D. L.J. Chem. Phys. 1995, 105,

1833.
(10) Doll, J. D.J. Chem. Phys. 1980, 73, 2769;1981, 74, 1074.
(11) For some applications of MCVTST see: (a) Viswanathan, R.; Raff,

L. M.; Thompson, D. L.J. Chem. Phys. 1984, 81, 828;1984, 81, 3118. (b)
Voter, A. F.; Doll, J. D.J. Chem. Phys. 1984, 80, 5814;1984, 80, 5832;
1985, 82, 80. (c) Voter, A. F.J. Chem. Phys. 1985, 82, 1890. (d) Raff, L.
M.; NoorBatcha, I.; Thompson, D. L.J. Chem. Phys. 1986, 85, 3081. (e)
Rice, B. M.; Raff, L. M.; Thompson, D. L.J. Chem. Phys. 1988, 88, 7221.
(f) Voter, A. F.; Doll, J. D.; Cohen, J. M.J. Chem. Phys. 1989, 90, 2045.
(g) Agrawal, P. M.; Thompson, D. L.; Raff, L. M.J. Chem. Phys. 1989,
91, 6463. (h) Schranz, H. W.; Raff, L. M.; Thompson, D. L.Chem. Phys.
Lett. 1990, 171, 68;J.Chem. Phys. 1991, 94, 4219;Chem. Phys. Lett. 1991,
182, 455. (i) Sewell, T. D.; Schranz, H. W.; Raff, L. M.; Thompson, D. L.
J. Chem. Phys. 1991, 95, 8089.

(12) Severin, B. C.; Freasier, B. C.; Hamer, N. D.; Jolly, D. L.;
Nordholm, S.Chem. Phys. Lett. 1978, 57, 117.

(13) Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A.
H.; Teller, E.J. Chem. Phys. 1953, 21, 1087.

(14) Behrens, R., Jr.; Bulusu, S.J. Phys. Chem. 1992, 96, 8877;1992,
96, 8891.

(15) Wight, C. A.; Botcher, T. R.J. Am. Chem. Soc. 1992, 114, 8303.
(16) Botcher, T. R.; Wight, C. A.J. Phys. Chem. 1994, 98, 5441.

Figure 6. Computed branching ratiokCME/kSBR. The MCVTST and
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